Math 113 Fall 09 Exam 1 Key

1. d
2. c
3. a
4. b
5. f
6. d
7. c
8. e
9. (a) 2
(b) 78
(c) $72 \mathrm{ft}-\mathrm{lbs}$
(d) $x \ln x-x+C$
(e) $x \ln ^{2} x-2 x \ln x+2 x+C$
(f) $-(1+x) e^{-x}+C$
(g) $\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C$
(h) $\frac{\pi}{2}$
10. We can use the half angle identity:

$$
\begin{gathered}
\int_{0}^{\pi} \sin ^{4} x d x=\int_{0}^{\pi}\left(\sin ^{2} x\right)^{2} d x \\
=\int_{0}^{\pi}\left(\frac{1-\cos (2 x)}{2}\right)^{2} d x \\
=\frac{1}{4} \int_{0}^{\pi}\left(1-2 \cos (2 x)+\cos ^{2}(2 x)\right) d x \\
=\frac{1}{4} \int_{0}^{\pi}\left(1-2 \cos (2 x)+\frac{1}{2}+\frac{1}{2} \cos (4 x)\right) d x
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{4} \int_{0}^{\pi}\left(\frac{3}{2}-2 \cos (2 x)+\frac{1}{2} \cos (4 x) d x\right. \\
=\left.\frac{1}{4}\left(\frac{3 x}{2}-\sin (2 x)+\frac{1}{8} \sin (4 x)\right)\right|_{0} ^{\pi} \\
=\frac{3 \pi}{8} .
\end{gathered}
$$

11. We use integration by parts: Let $u=e^{t}$ and $d v=\cos t d t$. Then, $d u=e^{t} d t$ and $v=\sin t$. Thus,

$$
\int e^{t} \cos t d t=e^{t} \sin t-\int e^{t} \sin t d t
$$

We use integration by parts again. Let $u=e^{t}$ and $d v=\sin t d t$. Then, $d u=$ $e^{t} d t$ and $v=-\cos t$. The above becomes
$\int e^{t} \cos t d t=e^{t} \sin t+e^{t} \cos t-\int e^{t} \cos t d t$.
By moving the integral on the right to the left hand side, we have

$$
2 \int e^{t} \cos t d t=e^{t} \sin t+e^{t} \cos t+C
$$

or

$$
\int e^{t} \cos t d t=\frac{1}{2} e^{t} \sin t+\frac{1}{2} e^{t} \cos t+C .
$$

12. There are a number of ways to do this problem correctly, depending on where you set the origin. In the derivation below, I will assume $y=0$ at the bottom of the cone, and that $y=10$ at the top. At a height y, I need to know the cross sectional area of the cone. Since the cross sectional radius is 0 at the bottom and 4 at the top, the cross sectional radius at
height y is $r=\frac{2}{5} y$. (You can find this by similar triangles or by finding the linear function from $(0,0)$ to $(10,4)$.) The water at height y needs to travel a distance of $10-y$ to get to the top of the tank. Since there is only 8 feet of water in the tank, we integrate from 0 to 8 . The integral is therefore
$60 \int_{0}^{8} \pi\left(\frac{2}{5} y\right)^{2}(10-y) d y=\frac{48}{5} \int_{0}^{8}\left(10 y^{2}-y^{3}\right) d y$.
13. We can separate this question into a question about the bucket and a question about the water.

First, since the bucket weighs 4 lb and is lifted 80 feet, the work is $4 \times 80=320$ ft-lbs.

Second, since the water is leaking out, we have a variable force. At $y=0$ (bottom of the well), the force is $F=40$. At $y=80$, the force is $F=32$. Since the water is leaking out at a constant rate, we can assume the force function is linear. The slope is $(32-40) /(80-$ $0)=-1 / 10$. Thus, the force function is $F(y)=-\frac{1}{10} y+40$. The work done in lifting the water is

$$
\begin{aligned}
& \int_{0}^{8} 0-\frac{1}{10} y+40 d y=-\frac{1}{20} y^{2}+\left.40 y\right|_{0} ^{80} \\
& =-\frac{1}{20} 6400+40 \cdot 80=2880 \mathrm{ft}-\mathrm{lbs}
\end{aligned}
$$

Thus the total work is $3200 \mathrm{ft}-\mathrm{lbs}$.

